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AN OPTIMAL INITIAL GUESS GENERATOR FOR ENTRY
INTERFACE TARGETERS

Juan S. Senent*

If a pure numerical iterative approach is used, targeting entry interface (EI) con-
ditions for nominal and abort return trajectories or for correction maneuvers can
be computationally expensive. This paper describes an algorithm to obtain an op-
timal impulsive maneuver that generates a trajectory satisfying a set of EI targets:
inequality constraints on longitude, latitude and azimuth and a fixed flight-path an-
gle. Most of the calculations require no iterations, making it suitable for real-time
applications or large trade studies. This algorithm has been used to generate initial
guesses for abort trajectories during Earth-Moon transfers.

INTRODUCTION

Calculating a return trajectory that targets a very specific set of (EI) conditions can be computa-
tionally expensive if a pure numerical iterative approach is considered. The number of constraints
and the nature of them, as we will see later, can make the problem very difficult for a numerical
optimizer since multiple local optima and feasibility problems will appear. As an intennediate so-
lution we can calculate an initial guess that can be used later by the numerical optimizer. This paper
describes an algorithm to generate such initial guess with the following features:

• It is analytical, in order to compute the optimal maneuver no numerical iteration is needed.
The only exception is the calculation of the velocity magnitude from the time of flight. Since
we are only generating an initial guess, it is beneficial to do it in a very fast way. The nu-
merical optimizer will obtain the final trajectory taking into account more realistic gravity
models.

• It finds the global optimal solution. Depending on the inequality constraints, this optimiza-
tion problem might present several local optima. This algorithm searches for solutions in all
the feasible regions guaranteeing a global optimal solution. Algorithms using a numerical
optimizer might run into a local optimum.

• It can handle inequality constraints in some of the EI targets. Sometimes the EI targets are
defined as a large database of points that create an area. We can check individually each
point, which can be computationally very expensive, or create one or more rectangular areas
that include them. In this way we will reduce the computational time dramatically.

• It can provide information about the feasibility of the problem. One the disadvantages of using
a pure numerical approach (e.g. a numerical optimizer) is that we do not have an insight of
the problem. If the optimizer fails to converge, we will not know the reason. It might be due
to our problem formulation, or an error in the program that runs the simulation or it might be
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that the problem is not feasible. This algorithm can generate information about the feasibility
of the problem since it can provide which inequality constraints could not be satisfied. We
can use the information to redesign the return trajectory or create a new EI area.

We can specify the EI targets in different ways: longitude, latitude, azimuth or cross-range and
down-range, etc. The type of targets and constraints that the algorithm can handle are described in
Table 1. In the first part of the paper, we will describe the solution to the problem when the inequality
constraints are not active. In this way, given the state of the spacecraft at a given time, a time of
flight between the burn and El, and a given velocity magnitude, we will obtain an optimal impulsive
maneuver that targets: altitude and flight-path angle. We can formulate an equivalent problem by
using the velocity magnitude instead of the time of flight. Once the basic optimal problem is solved
then we will add one by one the latitude, longitude and azimuth inequality constraints in the next
sections of the paper. Adding these inequality constraints will generate disjoint EI regions that can
be reached and therefore each region will have its own local optimum that has to be checked.

Table 1. EI variables and constraints

EI variable	 I Description

Altitude (h) Fixed
Longitude (A) Inequality constraint
Latitude (L) Inequality constraint

Velocity magnitude (v) Fixed (or calculated from time of flight)
Azimuth (Az) Inequality constraint

Flight-path angle (y) Fixed

The applications of this algorithm as an initial guess generator include: a nominal or an abort
return trajectory from the Moon that targets a specific geographical area at EI and that takes into
account a safe module disposal (avoiding some regions, e.g. some islands) or computing correction
maneuvers before EI to target a very specify EI point. This algorithm has been extensively used
and validated in the generation of abort return trajectories generated after the translunar injection
maneuver.

BASIC ALGORITHM

In this section we will examine the basic EI targeting problem with no inequality constraints. The
statement of the problem is the folowing:

Given the state of the spacecraft: position and velocity r, v« , calculate: a minimum impulsive
maneuver that targets the entry interface position magnitude re, the entry interface velocity magni-
tude ve and the entry interface flight-path angle y e . Once we solve this problem we can formulate a
similar one where the target is the time of flight instead of v,

Part I

In order to solve the problem, the algorithm will take several steps, the first part will consist of
calculating the basic parameters of the return trajectory:

• Calculate the semi-major axis and eccentricity of the return trajectory (also the parameter of
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the orbit)

re (re21eCOS -Y' )2 	 2	 (reUe COS ^e)2
a=	 2	 e= 1—	 p=all—e^_

2 — Tie	 aµ	 Y

• Calculate the velocity mangnitude after the return manevuer

	

C

1 - 11	 _F1,2	 J	 1
 21^e —	

^ vem,in — 2 tva =. —
ra 	 re	 re	 ra

where v,^in is the minimum ve that is necessary to obtain a return trajectory

• Calculate the true anomaly at EI

tan ^e
Be =arctan	 r

1— e
P

• Calculate flight-path angle after the return maneuver Via. There are two solutions:

e ye COS ')'e
	'Yap 2	

r_ ^ arccos ^	 (2)
rava

Additionally, the following condition should be satisfied:

re ve COS 7'e < 1rava	 —

• Calculate the true anomaly after the return maneuver ea for the previous two solutions

Ba l 2 = arctan tan 
7a¢ 2

1— 
p )

• Calculate the TOF from the abort maneuver to EI. First calculate the eccentric anomaly at EI:

a—re
Ee = arccos

\ ae

Although there are two solutions to the above equation, the EI is before periapse so only the
negative one will be used. The same equation should be applied to the eccentric anomaly
after the abort maneuver:

a—ra
Eal 2 = arccos ( 

ae

Again, there are solutions to this equation only if

a—ra 
<l<=>a(1— e)<ra<a (l+e)

ae

Finally, the TOF can be calculated:

a3

	

TOF1,2 = to — ta 1 2 =	
tt 

^Ee Ea i 2 — e (sin Ee — sin Eai,2)]	 (3)

Note that the TOF calculation is only valid if e < 1. Therefore this version of the algorithm
is only applicable for elliptical return trajectories.
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Two families of solutions have been found. Although these families will satisfy the constraints they
will have two different TOFs.

Part II

In the second part of the algorithm we will calculate the relationship between the position a
velocity vectors at EI: re7 ve . If we use the f and g functions in terms of the transfer angle (AO)
(see for example ., 'BOND'' `*)

ra = ref + Veg
	

(4)

Va = ref + Veg
	

(5)

where

f = 1 — ra (1 — cos AO)
P

g = rare sin OB
^p
^^, 1 — Cos OB	 1	 1	 1_

f	 Y y ( sin z	 ) [p (1 — cos AO) — 
re ra

g = 1— re (1—cos AO)
P

where AB = Oa — 9e . We can now compute the angle a between the r a and ve:

rave= re vef + ve 	 efg = reve Sin-' +v.2 9  = rave COs ce

(

re sin 'Ye f + veg
Ce = ar CCOS	 /I

ra

or alternatively,

ra X Ve l = ( ref + Veg) X Ve l = I f re X Ve I = reve COS 7Y I f I = rave sin a

tan a
reve Cos -Ye I f I	 re COS -Ye If

=	 _re ve sin ryef +veg re sin 1e  + V,g

We can see that the angle ce is constant and therefore all the possible ve are contained in a cone
around ra (see Figure 1) whose equation can be defined as:

ve = Cra + R cos Au + R sin Av	 (6)
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Figure 1. Relationship between the r a and v e vectors.

wherera is a unit vector in the direction of r a , and u, v will complete the right-handed coordinate
system. Their definition will change depending on the application. Also the angle A will determine
the location of ve in the cone (A E [0, 27]). From Figure 1 we obtain (note: a E [0, 7r] ):

C = ve COs a

R = ve sin a > 0

We can define a unit vector in the direction of ve

Ve = cos af, + sin a cos Au + sin a sin AV

From eq. 4 we can obtain an expression for re:

7

re = 1 (ra — Veg )	 (7)

using eq. ??

a — fi
(C a + R cos Au + R sin AV)	 (8)

( ra f 9C)ra — f (cos Au+ sin Av)	 (9)
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Again, all the possible values of r e are contained in a cone around r«.

re = 
rQ gC 

fa — 
gR (cos Au sin Av)

fre	 fre

Using eq. 9 we can obtain:

rd x re I = — gR (Cos AV — sin Au)
f 7'e

^gR (COS2 A + sin2
2

A)

gR
= fre

sin Q

we can express i^e in spherical coordinates as (I don't know if I need this, the second part is much
better):

re = cos pr,, + sin p cos Au + sin p sin Av

where:

r_ — n(Y
cos p =	 f

re

sin p = — gR
f 7'e

Relationship between p and AO:

ra — gC	 gR (	 v)T'e	 1 a —	 COS All + sin A
fry'e	 fVe,

re f,, = COS A0 __>COS A0 = COS p

gR	
r 
Fre 

Sin AOv, Sin a

fre	 fre

_ —sin OB
re Cos -y' if

17pf

_ — sin A01f i
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Therefore:

	

sin p = sin AB if f < 0	 p = AO if f < 0
	sin p = —sin OB if f > 0	 p = —AB if f > 0

if f < 0 — re = cos OBra, + sin AO cos Au + sin OB sin AV

if f > 0 — re = cos AOr, — sin AO cos Au — sin AO sin AV

If we define fG = — If 1 , (fs = fl) then

gR
—	 = fs sin AB

fre

and re can be defined by:

re = cos AOr,, + fs (sin AO cos Au + sin OB sin AV)

and therefore,

rev' = cos AB cos a + fs sin AO sin a cost A + f3 sin AO sin a sine A

cos AB cos a + fs sin AO sin a = cos (AO — fa) = sin -ye

cos (AB — f ce) = sin rye 4 sin (_2 — AB + f'O = sin rye

ye = 2	 a— AO + fs

	

OB — fsa = 2 —rye sin (,AO — fsa) = sin G 	 cos -ye > 0, since ye E 1-2, 2

therefore

	

sin (AO — fs a) > 0	 (13)

Also, if f < 0, we can calculate the angular momentum of the abort transfer orbit as:

ra	 U
	

V
re x ve = cos AO	 fs sin AO cos A

	
fs sin AO sin A

cos a	 sin a cos A
	

sin a sin A

(10)

(12)
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re x Ve = ra (fs sin AO cos A sin a sin A — sin a cos A fs sin AO sin A)

—u (cos A0 sin a sin A — cos a fs sin A0 sin A)

-1-v (cos AO sin a cos A — cos a fs sin A0 cos A)

sin A (sin AO cos a fs — cos AO sin a) u — cos A (sin AO cos a fs — cos AB sin a) v
f-, sin (AO — fa) (sin Au — cos AV,)

P, X Ve I = sin (A0 — fa) = Cos -Y'

h —	
re 

X 
ve	

= fs (sin Au — cos AV)
sin (09 — fa)

The angular momentum vector remains in the u — v plane, that is, rah = 0 (esto era obvio pues

ra is on the transfer plane).

The trajectories can be classified into two families:

1. The ones that cross the antipode (-Pa) and then the entry interface point (re)

2. The ones that cross the entry interface point (re ) and then the antipode (4j

We can find a criteria to distinguish between these two families based on the angular momentum of
the transfer orbit. We first get —ra x r,

ra	 LI	 V

—fa Xre=	 —1	 0	 0

cos AO	 fs sin AO cos A	 fs sin AB sin A

—ra x re = —u (— fs sin A0 sin A) + v (— fs sin A0 cos A)

= fs sin AO (sin Au — cos Av)

= sin OBh

In this way, we can classify the orbits according to this criteria as follows:

Family 1 if sin AO > 0
Family 2 if sin AO < 0

Also, since

fa x re 	 sin AO

fa x f,1	 sin 
OBI h = fh

The angular momentum vector is parallel (or antiparallel) to the intersection of the planes defined
by ra and f, (cosa que ya sabiamos pues los dos vectores pertenecen al plano de transferencia)

(14)
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We can now calculate the maximum and minumum inclination of the abort trajectory. If the
coordinate system is defined:

ll = projp,z _ proA.Qz pro'ection of the z-axis on the lane defined b r .Where ro z = z — rTZ r —

	

^projrQ z^ — cosDECrQ 	P 	 y a	 p j rQ	 ( a ) a—

v = ra x u = r-Xz	 To complete the right-handed coordinate systemcos DECrQ

ra	 In the direction of ra

Note: 1projr ,, z I = cos DECrQ

Esto esta MAAAAAALLLLLL. Rehacer con to que tengo en mis notas: 19/01/09

Since the inclination is the angle between z and h, the minimum inclination will occur when h is
parallel to u and the maximum inclination of the abort trajectory will occur when h is antiparallel
to fi. We can calculate the angles A associated with these two situations:

From eq. 14 we can get:

INCrri,i, = DECrQ	 A = 2 r

	

INCmax 	 INCmin = T — DECrQ	A = — 2

where DECrQ is the declination of r a in the x — y — z coordinate system (intertial system)

See fig. dibujar figura!!!!

Some properties that can be obtained:

( ra X re) T ve = f (re X Ve) = COS _Y,f I1 = 0

( ra X re) T projr e Ve = (N X Ie)T 
LVe — (^T,^,,) 

 Ye
J
 = 0

(ra X f,,) T projr, Ve = (fa X I,) T
 I

,e — (^aT 
Qe ) ra] = 

0

Therefore ve i projpe ve and projp,-v,lie on the same plane (the one defined by I'a x re)

Using eq. 14 we can prove that the amount of plane change only depends on the increment on A.

If we obtain the abort trajectories defined by A l and A2 , the angle between the two angular
momentum vectors is:

lil = sin Al u — cos A i V

h2 = sin A2u cos A2V

hT h2 = sin Al sin A2 + cos A l cos A2 = cos DA = cos rl --^ DA = it

9



therefore the amount of plane change is defined by the increment in A
Using eq. 14 we can prove that k, and —ka are contained in the plane of the orbit:

±kah = fka (sin Au — cos Av) = 0

We can now calculate va velocity after the abort maneuver. Using eqs. 15, 7 and 6:

Va = ref + Ve9 
= f 

(ra — Ve9) + Ve9 = f. ra + 9 — 
f 

Ve = (jra 
+ Ve/

fra + C ka + f (c os Au + sin Av)

Once again, va lies on a cone defined by f 

If va , velocity vector before the abort maneuver, is known, we can compute the optimal velocity
after the abort manuverva. The optimal velocity is just the projection of va on the cone defined by
eq. 15. We need to calculate the optimal angle A* that will produce va.

V* =	 f r C k+ R proj,.a va

a
f a

+	
a f l proir, Va

Rro Va
Va — Va = — p bra a — (cos Au + sin Av)

f 1projraVa

T *	 R uTpro.7r,, Va 	 cos A* = 
Cprojraya

Ll (Va — Va) = 	 — cos A
f	 1prOiraVa I	

^projrava

T *	 R VTpro^ra va 	 * _ VTpr Odr a Va
v (va — Va) _ —	 — sin A --4sin A —

f	 ^pr°jrava 
^	

Jproj,.ava

VT ro V
tan A* =	 p .^ra a

uTprojrava

Note: if f < 0 then from eq. 15 the radius of the cone f < 0 and therefore the equivalent cone
will be such as the original but where the nand v are rotated by 7. In that case:

vT ro v
A* = c`LTCta,ll ^ 

p .^ra a
T	

^ + Ti
` uprO.Ira Va /

Note: If the minimum distance between va and Va (minimum Av) is obtained when the angle
A* is such that the unit vector cos A*u + sin A*v points in the direction of projra Va , deviations

(15)

(16)

(17)
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sill 	 — cos AB sill

cos DEC,, sill
cos A = (19)

from A*will increase the distance between va and v a (increase in Av). The maximum distance
(maximum Av) will be found for a vet generated by A * + 7f, that corresponds to a vector that points
to —proj,.a v«. Therefore the Av will monotonically increase when A goes from A* to A* +T and
will monotonically decrease when A goes from A* + 7 to A*. Therefore, if constraints are impose
on A, [Amin, Amax]

A* if A * E [Amin, Amax]
*A =	 Amin if AVAq n	 2'Amax

Amax if OVA4 , G AVA,,,in

Note: From eq. 17 we can see that if the coordinate system is defined as in page 9 , A* depends
only on va and ra . That is, ve does not affect A*, therefore from eq. 8 we can say that all the
optimal abort trajectories will be on the same plane, since angular momentum vector h is the same.
The transfer plane of the optimal abort trajectories will not depend on the v,

We can now consider constraints in the latitude at entry interface.

From fig. la figura de la minima inclinacion, we can express z in the coordinate frame defined in
9 as:

z = sin (2 — DECra ) a -I cos (2 — DECra ) ra = cos DECra u + sin DEC.rara	 (18)

zTre = sin (DECEI)

zT re = cos DEC,. sin AO cos A + cos AO sin DEC,,

So if we consider that at entry interface (EI) DECEI ^ LATEI we call 	 the angle A
that will produce an abort trajectory with a determined LATEI.

Note: for each LATEI there are two solutions to eq. 11: ±AATTEI • The positive one will
generate positive EI azimuths (direct return, INC E [0, 2 ^) and the negative one will produce
negative EI azimuths (retrograde return, INC E [2, 7]). We call this if we calculate the INC
of the abort trajectory:

cos INC = zT h = sin A cos DEG,	 (20)

If A E [0, 7r] then we obtain a direct return:

sin A > 0, since cos DEC,, > 0 —^ cos INC > 0 - INC E [0, 2 ] —> AzEI E [0, 7r]

If A E [-7, 0] then we obtain a retrograde return:



sin A < 0, since cos DEC.,, > 0 --> cos INC < 0 ^ INC C 12 , 7r] -->AzEI E [,r, 27r]

Note: the relationship between the angle A and AzE7 is given by:

cos INC = cos LATEI sin AZEI = sin A cos DEC,,

sin AZEI = 
sin A cos DEC,,	 21)

cos LATEI

We can compute AZEI as a function of A.

cos AZEI = hT Re X Z)

Ire x ZI

re x z defines a plane with constant longitude that contains re

From their definition we can compute re x Z:

re x z = — cos DEC,, sin AB cos Ara+sin DECra sin AO sill 	 DEC,.,, cos AO sill 	 sin AO cos A) v

also

re x z = sin ( 2 — LATEI) = cos LATEI

so now we can get

cos AZEI = hT (re X Z)

I re x Zl

sine A sin DECra sin AO -+ cos t A sin DECra sin AO — cos A cos DEC,,, cos AO
cos LATEI

sin DEC.,., sin AO — cos A cos DEC,, cos A0

cos LATEI

Using the above eq. and eq. 21 we can compute tan AZEI

tan AZEI =
sin A cos DEC.,,	 sin A

_
sin DEC,, sin AO cos A cos DEC,, cos AO tan DECra sin AO — cos A cos AO

If a specific AZEI is required, we can now solve for A
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sin A + cos A cos AO tan AZEI = tan AZEI tan DEC.,.,, sin AO

sin (A + E) 1 + cos2 AO tang AZEI = tan AZEI tan DEC.,., sin AO

where

C
E = arctan 

cos A0 tan AZEI

	

1	 /J

Therefore we can have two solutions for A

A 1 = aresin 
tan AZEI tan DEC,., sin AO

1 + cos2 AO tang AZEI

A 2 =7r —aresin
tan AZEI tan DEC,, sin AO

 — e
1 + cos2 AO tang AZEI

As an alternative:

sin (A i + E) = sin (,r — A i — e) = sin (A 2 + E)

-7r — A1 —E=A2 +E — A2=7 — A1 - 2E

AZEI can be also directly computed as follows:

If we define an E-N-R coordinate system associated with re :

R = re

N _ proj ,z
I p7 0jT'ZI

E := NxR= 
Zxf,

proj 'z

(E 9'Oj$e Ve) T (Z X f' )	 (Ve — re Ve re/ T (Z X f')

	

AZEI = a.rctan	 = arcta.n
(projr

'
Ve)T pro7re z	 /(Ve — re Vefe ) T (Z — T'e ZT

f Ve ( Z X fe)	

V

e ( Z X f
e) 

J	 ^ZT (fe X Ve) J

	

= arctan	 =arctan	 = arcta.n

L
ZT	

Vere)	 Ve pro3p,Z	 z projgeT( Ve — re	 Ve

Since once the LATEI is specified, A is determined using eq. 11, the above eq. is only useful
to obtain the value of the abort trajectory AZEI but not to specify it. That is, we cannot specify
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LATEI and AZEI of the abort trajectory at the same time. From the two solutions of the equation
only one is valid?'? averiguar.

From eq. 12 we can see that the sign of A and AZEIare the same.
Calculating the optimal abort trajectory when latitude constraints [LATmin , LAT,-ax] at EI are

imposed. In the rest of the document we will assume that DECEI ^ LATEI

We can rewrite eq. 11:

1	 cos AB sin DEC. _
cos A = 

cos DECr,, sin 
AO sin (LATEI ) — 

cos DEC. r,, sin AB K
t sin (LATEI) K2 (22)

Given the latitude constraints above, a range for the angle A, [Amin, Amax], can be calculated:

First we will calculate the range of feasible latitudes for this problem. The range of feasible
latitudes [LATfmin ,LATf?zax]will be such that that eq. 14 has a solution and also it has to be
within the range [LATmin, LATmax]

Lmin = Ki sin LATmin + K2

L,n,ax = Kl sin LATmin + K2

[LATE,- in , LAT f,,, ax] can be calculated using the following table:

Lmin > 1 —1 < Lmin < 1 Lmin < —1

Lmax > 1 No solution [LATmin., LATp] [LAT,,,,, LATp]

—1 < Lmax < 1 [LATp, LATmax] [LAT,nin, LATmax] [LAT,-, LATmax]

Lmax < —1 [LATp, LAT,-] [LAT,-in, LAT,-] No solution

where LATp and LAT,,,, are defined as:

1—K2
Ki sin LATEI + K2 = 1 -->LATp = aresin ( 

K1

K1 sin LATEI + K2 = 1 --> LATm, = aresin I —1 — K2 I
Kt

Once we have the range of feasible latitudes that the abort trajectories can achieve, we have to
calculate the range [Amin, Amax]

Since LATEI E [- 7  , 2 ] , hacer grafica de mis notas 7/14/08

Kl > 0 --4 K, sin (LATEI)+K2 increases monotonically ! Amin = arccos (Kl sin (LAT fmin) + K2)
l Amax = arccos (Ki sin (LATfmax ) + K2)
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K1 < 0 --4K1 sin (LATEI )+K2 decreases monotonically	 Amin = arecos (K1 sin (LATf,,,,ax) + K2)

Amax = arccos (Kl sin (LAT f„lin) + K2)

Note: if the abort trajectory is retrograde then the range would be [ —Amax, —Amin].

Algortihm to compute the optimum abort trajectory when latitude constraints are imposed

1. Specify type of solution I or 2 (from eq.3)

2. Specify direct or posigrade

3. Compute the optimum A* using eq. 10

4. If A* E [Amin, Amax] then END

5. Compute 
AVA,nzn 

and AVA, 
x 

and return the minimum

We can also find the relationship between A a required longitude at entry interface:

We can calculate first the difference between the longitude of the antipode of ra and the longitude
at any entry interface point re

(prOJzre)T (projz — ra) = l proj7f, I l p7-ojz — Ta, I cos AA

I projzi'J = 1 — (z Tf = 1 — sin2 (DEC--I ) = cos DECEI

I 
projz — ra I = cos DEC,,

(pro lzre)
T (projz — ra) _ —reprojzra

(projzre)T (projz — fa) _ — "rep?'ojzra 
	 1 	 /	 \

-rT [ra —

 (ZT^'
) zJ	 —re ra 

+ (ZTf,) I z T ra I

— cos AO + sin DECEI sin DEC,.

— cos AO + sin DECEI sin DEC,,,
cos DECEI cos DECra

cos AA =

So if a specific AA is required, we can compute DECEI associated with it:

sin DECEI sin DEC,,, — cos DECEI cos DECra cos AA = cos De

sin(DECEI + E) sin2 DECra + cos2 DECra cost AA = cos AO
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E = arctan	
cos DEC.,., cos AA	

arctaal
_	 — cos Da

sin DEC,,,	 (tan DEC,.,,

Now we can obtain the two solutions for DECEI:

DECEI,	
cos D8

aresin	 — e
sine DEC,. ,, + cos2 DEC,.,, cos t AA)

DECEI, = 7 — aresin	
cos OB	

— E
sine DEC,., + cos2 DEC,., cos2 AA

sin (DECEI, + e) = sin (7r — DECEI, — e) = sin ( DECEI, + e)

T — DECEI, — e = DECE12 + e ^ DECE12 = 7r — DECEI, — 2e

Alternative formulation!!!!!!!!!!!!

We can also find the relationship between A a required longitude at entry interface:

We can calculate first the difference between the longitude of the center of the entry interface
points e,r, and the longitude at any entry interface point re

(projzre) T (proJzcs ra) = I prCjzreI projzesral cos AA

I projz rel = 1 — (zTre) 2 = 1 — sin, (DECEI ) = cos DECEI

proj, cs ra I = cos DEC,,

(proiz re) T (projz csra) = CsTeprv.lzra

(prOJzre) T (proJzcs ra) = CsT eprOJzra

= C'f
L

1 a — (ZTf,) Z

J 
= cs reTa — Cs (zTre)(zf,)

 cs cos AO —c g sin DECEI sin DEC,.,, \= —c, (\— cos AO + sin DECEI sin DEC,. ,, )

cos Da =
—c, (— cos AO + sin DECEI sin DEC,, )

cos DECEI cos DEC,.,

So if a specific Da is required, we can compute DECEI associated with it:
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cos DECE j cos DEC,, cos Da + c, sin DECEI sin DEC,, = c, cos AO

c, cos DECEI cos DEC,. ,, cos AA + sin DECEI sin DEC, ,, = cos AO

sin DECEI sin DEC,.,,. + cs cos DECEI cos DEC,,, cos Da = cos AB

sin(DECEI + E) Vsine DEC,,, + cos2 DEC,,, cost AA = cos AB

cs cos DEC,,, cos Da	 C, Cos Da
C =arctan	

sin DEC,,,	
=arctan (tan 

DECr,, )

Now we can obtain the two solutions for DECEI:

DECEI, = aresin (
cos AO	 1 - F

sine DECrQ + cos2 DEC,,, cost 0A)

DECEI2 = 7 — aresin	
cos OB	

— E
sine DEC,. + cos2 DECrQ cost Da

sin (DECEI, + c) = sin (7 — DECEI , — c) = sin (DECEI2 + E)

T — DECEI, — c = DECEI2 + c ^ DECEI2 = T — DECEI, — 2E

Once we have the DECEI associated with the required AA, we can compute the angle A using
eq. 19. Therefore in order to compute A such that the abort trajectory has a specific longitude at
entry interface the following procedure should carried out:

1. Compute the longitude associate with the antipode of ra

2. Compute AA = A, — A—,,,

3. Compute the latitude(s) DECEI associated with this value of Da

4. Compute the angle(s) A assciated with DECEI
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We can also calculate the angle A that can generates the maximum Da. The maximum Da occurs
when a meridian is tangent to the projection of the circle generated by fa (see Fig. HACER LA
FIGURA!!!!!!!):

(proji'Z)T (proj^J') = 0

Ife — (CSfafe) 
Csfa] 

_ [fe — Cos OBfa]

f _, sin A0 (cos Au+ sin Av)

z T fe = sin DEC,.,, cos OB + f, sin OB cos DEC,,, cos A

1

L
Z — (ZTp,) f'] T [ f_, sin OB (cos Au+ sin Av)]

z— (ZTfe) 
re] 

T ( cos Au+ sin Av)

cos DEC,., cos A — (Z Tfe) (f, sin OB cos2 A + f, sin AB sin  A)

cos DEC.,., cos A — (sin DEC,., cos OB + f, sin OB cos DEC.,., cos A) f, sin OB

cos DEC,.,, cos A — sin DEC,., cos AO f, sin OB — sine OB cos DEC,., cos A
cos DEC,. ,, cos A (1 — Sill 2 AO) — sin DEC,.,, cos AOL sin AO

= 0

= 0 since f, sin OB ^ 0 (AO :^

= 0

0
0
0

sin DEC,,, OB sin AB
cos A 

f
= 3	 ra	 = fs tan DEC,.,, tan AB

cos DEC,.,, (1 — sin2 AO)

If there are no solutions to the eq. it will mean that the maximum Dais reached when A = A,,,,z,,
or A = Amax-

If a range of longitudes is specified, we can calculate the range(s) of the angle A associated with
it.

NOTE ON AZIMUTHS

In general, we can classify all the cases according to three criteria: family, EI plane position and
orientation of the f,, in the (u — v) plane.

• As it is mentioned above, the family (1 or 2) criteria can obtained by using sin OB

• EI plane position. For the same velocity vector, the azimuth value will change its sign if the
EI plane is on the side of the antipode or not. The criteria we will use is the sign of cos OB.
If this sign is negative the EI plane is on the side of the antipode (see eq. 12) and viceversa.
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^^ G

Case A Case G

Table 2. Azimuth case classification

Family EI plane position re in the (u — v) plane Family EI plane position

sin OB cos OB fs sin OB Case sin OB cos OB fs Case

<0 <0 <0 G <0 <0 >0 G

<0 <0 >0 C <0 <0 <0 C

<0 >0 <0 F <0 >0 >0 F

<0 >0 >0 B <0 >0 <0 B

>0 <0 <0 E >0 <0 <0 E

>0 <0 >0 A >0 <0 >0 A

>0 >0 <0 H >0 >0 <0 H

>0 >0 >0 D >0 >0 >0 D

Figure 2. Azimuth type 1

19



v

Figure 4. Azimuth type 3

Case B

Figure 3. Azimuth type 2

Case D

Case C

	

	
Case E

Figure 5. Azimuth type 4

Case H

Case F
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• The orientation of r, in the (u—v) plane can be easily obtained using f s sin AO. If f, sin AO >
0 ....EXPLAIN!!!!!

Some cases are equivalent, for example: cases A and or B and H (see above figure). In some cases
Az changes continuously when the angle A is varied, in some other cases there is a discontinuity
when A = 0. Also, the signs of A and Az can be the same or opposite. In this way,

if > 0	 sign(Az) = sign(A)

if fs < 0	 sign(Az) sign(A)	 (23)

if fG cos 0 > 0 --4 discontinuity at A = 0

if cos 0 < 0 --^ continuity at A = 0

Finally, we can classify all of the azimuth types according to the following table:

f-, cos AO Azimuth type

>0 <0

A^

1	 A

<0 >0 2	 a

>0 >0

Aj

3	 A

< 0 <0

A-

4 A
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Note on the extremes of the arccos function

Y = arccos (f (a))

—f'(a)
?a	 1 — f(a)2

f"(a) (1 — f (a) 2 ) 1/2 — 2 (1 — f (a) 2 ) -1/2 (-2f (a)f'(a))
1 — f(a)2

if Y' = 0 4^ P(a) = 0 , therefore

Y// l y =o = — f"(a) (1 — f (a)2) -1/2

if f"(a) > 0 — Y" < 0 — maximum	 (24)

if f"(a) < 0 — y" > 0 — minimum

Calculating the maximum or minimum azimuth

From the law of cosines we can get:

cos l = cos a cos r + sin a. sin r cos x

cos l — cos a cos r
cos x =

sin a sin r

where:

r E [0, 7]: angle between the entry interface position and the antipode
l C [0, 7, ]: angle between the north (z-axis) and the antipode
a C [0, -,r]: angle between the north (z-axis) and the entry interface position

From the results of the previous section we can now calculate the maximum or minimum x. We
only need to calculate the conditions for cos x. Since r and l are constant, cos x will depend only
on a,

d cos x _ sin2 a cos r sin r — cos a sin r (cos l — cos a cos r) _ cos r — cos a cos l
da	 (sin a sin 1, ) 2	 sin2 a sin r

therefore

d cos x
0 — cos r — cos a. cos l = 0 ^ cos a =

cos r_ 

da	 cos1
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We have a necessary condition for finding the extreme:

if we define cs = CO' oe
Icos A9 

COS l = z  (CS I'" ) = c, Sin DEC,,,

sin  = I  x (c, P,,) = cos DEC,,,

COST = I'e( Cj" ) = ICOSA01

sin r = Ire x (csra, ) I = Isin OBE

Cos DEC,, cot DECDEC,,,— l = 2 — DEC,,, if cs > 0
tan l = 

—cot DEC,,,l = 2 +DECra if cs < 0cs sin DEC,,,

tan r = 
sin OBI

Cos A01

cos r	 cos OB

Cos l — 1	 sin DEC, ,,, 	 1

d2 Cos x 	 sin a cos l sine a sin r — 2 (Cos r — cos a Cos l) sin a cos a sin r

dal	 (sin2 a sin r) 2

d2 COS x	 sin  a cos l sin r	 sin a COs l
dal	 d cos x =c	 (sin2 a sin r) 2	 sin r

da

If we take into account:

sinr = sinA01 > 0

sin a > 0

Cos l = cs sin DECra

From eq. 24 we can obtain a criteria for maximum or minimum azimuth

d2 COs x	 ^> 0 if c,sin DEC,,,> 0	 x,,,,ax
dal dog x =e < 0 if c.,g sin DECra < 0	 xm,in

da

We can find now the maximum or minimum x. First,
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sin a > 0	 1 — cos2 a —_ 1 _ 
(CoS r ) 2 	 COS2 l —cos2 r

cos l 	 cos l

	

cos l — cos i Cos r	 cos l (cos2 l — cos2 r)	 cos l cos2 l — cos2 r
cos x = 

sin a sin r	 cos2 —1 	 r sin r cos l	 Cos l sin r

_ sin DEC,,, I V^sin2 —DEC,,,— cos2 OB
cs sin DEC,. I sin A0

si112 DEC.,.. — cos2,A0
= sign.	 > cs sin DEC,..

sin A01

2 DEC,.. — cos2 A0
x =arccos sign cs sin DEC,..

sin OBE )I

Finally, Azcan be calculated (see diag

	

Az	

rams ....explain)

7, — x if c3 Sin 'A0 < 0
=

	

X	 if cs sin AO > 0

f

	

if cs sin OB < 0	 %min	 Azmax

1\ xmax 3 Azmin

	

if c3 sin AO > 0	
xmin Azmin
xmax Azmax

Also the angle y associated to Az can be calculated as follows:

cos a = Cos l cos r + sin l sin r Cos y

Cos y = cos a—cos l cos r
sin l sin r

cos r

Cos z — cos l cos r _ Cos r — Cos2 l cos r
sin l sin r	 sin l sin r cos l

_	 cos r sin l _ cos AO cos DEC,. _	 Cs I cos AO	 _	 cos AO

	

sin r cos l	 I sin OBE cs sin DEC,a	I sin AO  tan DEC,.	 sin AO I tan DEC,.

From eq. 23, therefore we can calculate A as:

cos D0
Y = arccos

sin OB I tan DEC,.

The magnitude and sign of Acan be calculated (see diagrams ... . explain .. . the sign Acan be deter-
mined by the signs of Az and fs)
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A= sign(7r — y, f3Az) if fs sin OB < 0

	

sign(y, fS Az)	 if f, sin OB > 0

The above derivations calculate only Az E [0,7] if we are interested in retrograde solutions
(Az', A'), all we have to do is:

Az' _ —Az

A' _ —A

rAzmin Azmax
Azmax Azmin

CALCULATING VE GIVEN THE TOF

r,
e cos E, = 1--

a
r,ye _ 

rev, sin -y,
e sin E, _ 

	

µa	 pa

Note:

_^
areve are re a _ 2µa2 re — µare

tare — re = r,(2a — r,)
µa	 µaµa

rp(2a—rp)
P	 a	 (2a —rp )	 a — rp

e=--1=	 1=
rp	 rp	 a	 a

r, v, sin y, — r,v, sin ^'e — sin rye N/r, (2a — r,)
sin E, _	 —	 —

e pa	
a—

a 
rp 

µa	 a — rp

a—r,	 a —re,	 a—reCOS 
E, =	 _	 _

ea	 a—rp a a — rp
a

reve sin ye	 are ye sin rye

tan E,	 a	 µa	 Sin y, re —(2a— r,)
_ 

µ
 1— a	 a — re	 a — r,

COS Ea =
a—ra a — ra

_
ea	 a — rp

L=r,—a.
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M = — sin 7e Vr —(2ct— re)

K=ra — a

—M
sin Ee =

a — rp

cos E, =	 -->(a — rp	 =
—L	 2 _	 L2	 L2	 (a — rp ) 2 L2

=
a — rp	 1—sin2Ee 1— M

2	
(a—rp)2—M2

(a-TP

	

2 2	 2

(a — rp) 2 = (a — r^) L 
--4 l —	 L2	 (a — rp) 2 = L2 + M2

(a — rp) — M 2	 (a — rp ) — M2

a— r 2	
K2

cos Ea —

	

2 —	 a

a—rp	 L2+M2

E^2

sin Ea=fFl— L2 + M2

The sign of sin Ea will depend on the type of solution: 1 or 2

if Ea E ( -7r, 0) E« < 0 --* sin Ea < 0 Typel

if Ea E (0, 7r) Ea > 0 --+ sin Ea > 0 Type2

a: — r«	 — K
	Cos Ea =	 _

a — rp	 L2+M2

Note:
a—rp>0

that's why we get the positive solution of L2 + M2

tan E _ f 1 
L2KMz = L2 + M 2 — K2

Ea —	 —K	 —K12+Al2
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